A SOLUTION TO THE SPLITTING MIXED GROUP PROBLEM OF BAER

BY PHILLIP GRIFFITH(1)

1. Introduction. All groups considered in this paper are assumed to be additively written abelian groups. We follow for the most part the notation and terminology of [8]. We mention the following notations and definitions. If G is an abelian group, then tG denotes the maximal torsion subgroup of G and G_p denotes the primary component of tG for the prime p. The p-height of an element $x \in G$ is denoted by $h_p^G(x)$. We call a group G Hausdorff if it is Hausdorff in its n-adic topology. The group of rationals is denoted by Q and the subgroup of Q consisting of the integers by Q. The direct product of \mathcal{R}_0 copies of Q is denoted by Q. After Nunke [11], a group G is called locally free if it is isomorphic to a pure subgroup of a direct product of copies of Q, that is, if G is \mathcal{R}_1 -free and separable.

The central problem of this paper is one posed by Baer [1] in 1936 (also see Problem 30 in [8]) that asks for a characterization of those groups G for which Ext (G, T) = 0 for all torsion groups T. Such a group is called a Baer group or more simply a B-group. Baer [1] proved that any countable B-group is free. Since subgroups of B-groups are again B-groups, it follows that B-groups are \aleph_1 -free. More recently Baer [3], Erdös [7] and Sasiada [8] independently proved that P is not a B-group. J. Rotman [12] showed that separable B-groups are slender and Nunke [11] removed the condition of separability. In this paper we settle the problem by showing that B-groups are necessarily free. More generally, for a nonempty subset N of the primes, we call a group G a B^N -group if Ext (G, T) = 0 for all torsion groups T such that $T_p = 0$ for $p \notin N$. We are successful in finding necessary and sufficient conditions on the structure of a group G in order that G be a $B^{\mathbb{N}}$ -group for a prescribed subset N of the primes. The proofs of these results rest on the existence of a remarkable class of mixed groups. We show, for any cardinal number μ , that there is a Hausdorff mixed group M such that M/tM is divisible of rank μ and such that every torsion free subgroup of M is free. Our method of constructing such a group M is a somewhat complicated one. The most important tool used in showing that every torsion free subgroup of M is free is the "back-and forth" technique for direct sum decompositions introduced by Hill and Megibben in [10]. The final section of this paper deals with locally free B^N -groups (not all

Presented to the Society, November 25, 1967 under the title *Baer groups are free*; received by the editors June 22, 1967.

⁽¹⁾ The author wishes to acknowledge support by the National Aeronautics and Space Administration Grant NsG(T)-52.

 B^N -groups need be locally free). We show that if N is a nonempty proper subset of the primes, then there is a locally free B^N -group that is not free.

2. An existence theorem concerning mixed groups. We begin by establishing a special case of our main result on mixed groups.

LEMMA 2.1. There is a Hausdorff mixed group X such that $X/tX \cong Q$ and such that any torsion free subgroup of X is cyclic.

Proof. For each prime p, let $M^{(p)} = \prod_{n < \omega} \{b_{pn}\}$ where $\{b_{pn}\}$ denotes the cyclic group of order p^n and set $M = \prod_p M^{(p)}$ where p ranges over the primes. Let $u = \langle u_p \rangle \in M$ where u_p is an element of $M^{(p)}$ defined as follows: $u_p = \langle p^{e_n}b_{pn} \rangle$ where $e_n = [n/2]$ ([] denotes the greatest integer function). Note that $h_p^{M(p)}(u_p) = 0$ since $e_1 = 0$. It is elementary to see that u_p is an element of infinite order in $M^{(p)}$ and hence that u is an element of infinite order in M. It is also easily seen, for each $y = \langle y_p \rangle \in tM$ and each prime p, that $h_p^M(nu+y) = h_p^{M(p)}(nu_p+y_p) < \infty$ where n is a nonzero integer. To show that $h_p^{(M/tM)}(u+tM) = \infty$ for each prime p, it suffices to show that for each nonzero integer m and each prime p there is an element $x^{(m)} \in tM^{(p)}$ such that $u_p - x_p^{(m)} \in p^m M^{(p)}$. Clearly, there is a positive integer N such that if $n \ge N$ then $e_n \ge m$. Define $x_p^{(m)} = \langle \delta_n b_{pn} \rangle$ where $\delta_n = p^{e_n}$ for $n = 1, \ldots, N$ and $\delta_n = 0$ for n > N. Then $u_p - x_p^{(m)} \in p^m M^{(p)}$ and $x_p^{(m)} \in tM^{(p)}$. Since M/tM is torsion free there is a pure subgroup M of M containing M and M such that M is a pure rank one subgroup of M/tM. Since rank M and M and M such that M is a pure rank one subgroup of M that M is follows that M and M is follows that M and M is follows that M and M and M such that M is a pure rank one subgroup of M that M is follows that M and M is follows that M and M and M such that M is a pure rank one subgroup of M it follows that M and M is follows that M and M and M is follows that M and M and M is follows that M and M is follows that M

Suppose that A is a subgroup of X such that $A \cap tX = 0$. We may further suppose that $A \neq 0$. Since $A \cong \{A, tX\}/tX \subseteq X/tX \cong Q$, it follows that A is torsion free of rank one. Let $a \neq 0 \in A$. Since $X/tX \cong Q$ there are nonzero integers r and s such that ra = su + y where $y = \langle y_p \rangle \in tX$. We have already observed that $h_p^X(ra) = h_p^X(su + y) = h_p^M(su + y) < \infty$ for each p. Hence $h_p^A(ra) < \infty$ for each prime p. There is a positive integer N such that $y_p = 0$ for all p > N. Let p be any prime larger than N + |s|. Then (s, p) = 1 and $h_p^A(ra) \leq h_p^X(su + y) = h_p^{M(p)}(su_p)$. Since s and p are relatively prime, $h_p^{M(p)}(su_p) = h_p^{M(p)}(u_p) = 0$. Thus, $h_p^A(ra) = 0$ for each prime p larger than N + |s|. Hence, the height sequence for ra in A is zero except for a finite number of primes and contains no "infinities". (For definition of height sequence, see [8].) It follows by a Theorem of Baer [2] that $A \cong Z$.

Let X be a group satisfying Lemma 1, μ a cardinal number and let Λ be an initial segment of the ordinal numbers having cardinality μ . For the remainder of this section, we define the group K_{μ} to be $\sum_{\lambda \in \Lambda} X_{\lambda}$ where $X_{\lambda} \cong X$ for each $\lambda \in \Lambda$. We now improve Lemma 2.1.

LEMMA 2.2. Let A be a torsion free subgroup of K_{μ} . Then A is \aleph_1 -free.

Proof. By a theorem of Pontryagin [8] we need only show that every subgroup of A of finite rank is free. Since any subgroup of A of finite rank is isomorphic to a torsion free group contained in a finite number of the groups X_{λ} , it is enough to

prove the lemma for K_n where n is a positive integer. For n=1, the lemma follows from Lemma 2.1. Therefore, suppose the result holds for all integers $\mu \le n$ and consider a torsion free subgroup A of $K_{n+1} = \sum_{i=1}^{n+1} X_i$. Let θ be the natural projection of K_{n+1} onto K_{n+1}/tK_{n+1} where θ restricted to X_i is the natural projection of X_i onto X_i/tX_i . Also let $B = \{a \in A \mid \theta(a) \in \sum_{i=1}^n \theta(X_i)\}$ and let π be the natural projection of K_{n+1} onto $\sum_{i=1}^n X_i$. Suppose that $b \in B \cap \text{Ker } \pi = B \cap X_{n+1}$. Since $\theta(b) \in \sum_{i=1}^n \theta(X_i)$, it follows that $b \in tX_{n+1} \subseteq tK_{n+1}$. Therefore, b=0 and $B \cong \pi(B) \subseteq \sum_{i=1}^n X_i \cong K_n$. It follows from the induction hypothesis that B is free. Hence, $B = \sum_{i=1}^k \{b_i + y_i\}$ where $k \le n$, $b_i \in \sum_{i=1}^n X_i$ and $y_i \in X_{n+1}$. Since $\theta(b_i + y_i) \in \sum_{i=1}^n \theta(X_i)$, it follows that $y_i \in tX_{n+1}$ for $i=1,\ldots,k$. Let m be a positive integer such that $my_i = 0$ for $i=1,\ldots,k$ and let $i=1,\ldots,k$ and that $i=1,\ldots,k$ and that $i=1,\ldots,k$ and that $i=1,\ldots,k$ and that $i=1,\ldots,k$ is easily verified that $i=1,\ldots,k$ and that $i=1,\ldots,k$ and thus $i=1,\ldots,k$ is free.

We now establish the main result of this section. For notational convenience we use the notation $\sum_{I} X_{\lambda}$ to indicate $\sum_{\lambda \in I} X_{\lambda}$ where $I \subseteq \Lambda$.

THEOREM 2.3. For any cardinal number μ , there is a Hausdorff mixed group M such that M/tM is divisible of rank μ and such that every torsion free subgroup of M is free.

Proof. Let $M=K_{\mu}=\sum_{\Lambda}X_{\lambda}$. For the purpose of this proof, we assume that $0\in\Lambda$ and that $X_0=0$. From the definition of K_{μ} , it is enough to show that every torsion free subgroup of K_{μ} is free. If μ is countable, the result follows from Lemma 2.2. Hence, we may assume that μ is uncountable. Let A be a torsion free subgroup of K_{μ} . Since $|K_{\mu}/tK_{\mu}|=\mu=|\Lambda|$, it follows that $|A|\leq |\Lambda|$. Thus, we may label the elements of A with the ordinals in Λ starting with $a_0=0\in A$ (we label $0\in A$ repeatedly if necessary). Again let θ be the natural projection of K_{μ} onto K_{μ}/tK_{μ} . We wish to express A and a subset of Λ as unions of well-ordered monotone sequences $[A_{\alpha}]_{\alpha\in\Lambda}$ and $[I_{\alpha}]_{\alpha\in\Lambda}$, respectively such that $A_0=\{a_0\}=0$ and $I_0=[0]$ and such that

- (i) $|I_{\alpha+1}-I_{\alpha}| \leq \aleph_0$.
- (ii) $I_{\alpha} = \bigcup_{\gamma < \alpha} I_{\gamma}$ and $A_{\alpha} = \bigcup_{\gamma < \alpha} A_{\gamma}$ if α is a limit ordinal.
- (iii) $a_{\alpha} \in A_{\alpha+1}$.
- (iv) $A_{\alpha} = A \cap (\sum_{I_{\alpha}} X_{\lambda}) = \{ a \in A \mid \theta(a) \in \sum_{I_{\alpha}} \theta(X_{\lambda}) \}.$

Suppose that the I_{α} 's and the A_{α} 's satisfying (i)–(iv) have been chosen for all $\alpha < \beta$, $\beta \in \Lambda$. If β is a limit ordinal, then we need only set $I_{\beta} = \bigcup_{\alpha < \beta} I_{\alpha}$ and $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$. We may assume that $\beta - 1$ exists. We define sequences $[B_n]_{n < \omega}$ and $[L_n]_{n < \omega}$ inductively as follows: $B_1 = \{A_{\beta - 1}, a_{\beta - 1}\}$ and let L_1 be the smallest subset of Λ such that $B_1 \subseteq \sum_{L_1} X_{\lambda}$. Clearly, $I_{\beta - 1} \subseteq L_1$ and $|L_1 - I_{\beta - 1}| \le \aleph_0$. In general for n > 1, we let L_n be the smallest subset of Λ such that $B_n = \{a \in A \mid \theta(a) \in \sum_{L_n - 1} \theta(X_{\lambda})\}$ $\subseteq \sum_{L_n} X_{\lambda}$. Since $B_{n+1} = \{a \in A \mid \theta(a) \in \sum_{L_n} \theta(X_{\lambda})\}$ and since $B_n \subseteq \sum_{L_n} X_{\lambda}$, it follows that $B_n \subseteq B_{n+1}$ and that $L_n \subseteq L_{n+1}$. Set $I_{\beta} = \bigcup_{n < \omega} L_n$ and set $A_{\beta} = \bigcup_{n < \omega} B_n$. Since

(ii) and (iii) clearly hold for $[I_{\alpha}]_{\alpha \leq \beta}$ and $[A_{\alpha}]_{\alpha \leq \beta}$, we need only verify (i) and (iv). If $a_{\beta-1} \in A_{\beta-1}$, it is easily seen that $A_{\beta} = A_{\beta-1}$ and $I_{\beta} = I_{\beta-1}$. Therefore, we may assume that $a_{\beta-1} \notin A_{\beta-1}$. To show that $|I_{\beta}-I_{\beta-1}| \leq \aleph_0$, it suffices to show that $|L_n - I_{\beta-1}| \leq \aleph_0$ for each n. Since we have already observed that $|L_1 - I_{\beta-1}| \leq \aleph_0$, we suppose that $|L_n - I_{\beta-1}| \le \aleph_0$ and consider L_{n+1} . By definition of L_{n+1} , it is enough to show that $|B_{n+1}/A_{\beta-1}| \leq \aleph_0$. We also may assume that $L_n \neq L_{n+1}$. Let π be the natural projection of K_{μ} onto $\sum_{L_n-I_{\beta-1}} X_{\lambda}$. Clearly, $A_{\beta-1} \subseteq \text{Ker } \pi \cap B_{n+1}$. Suppose that $x \in B_{n+1}$ and that $mx \in \text{Ker } \pi \cap B_{n+1}$ where m is a nonzero integer. Then x=y+w where $y \in \sum_{I_{\beta-1}} X_{\lambda}$ and $w \in \sum_{I_{n+1}-I_{\beta-1}} X_{\lambda}$. Since $\pi(w) \in t(\sum_{I_n-I_{\beta-1}} X_{\lambda})$ and since $\theta(x) \in \sum_{L_n} \theta(X_{\lambda})$, we have that $w \in t(\sum_{L_{n+1}-I_{\beta-1}} X_{\lambda})$ which implies that $\theta(x) = \theta(y) \in \sum_{I_{\beta-1}} \theta(X_{\lambda})$. By (iv), $x \in A_{\beta-1}$. Hence, $\text{Ker } \pi \cap B_{n+1} = A_{\beta-1}$ and $\pi(B_{n+1})$ is torsion free. Since $|L_n - I_{\beta-1}| \leq \aleph_0$, it follows from the definition of the X_{λ} 's that $|\pi(B_{n+1})| \leq \aleph_0$. Thus $|B_{n+1}/A_{\beta-1}| \leq \aleph_0$ and hence $|L_{n+1}-I_{\beta-1}| \leq \aleph_0$. Thus (i) holds for $\alpha \leq \beta$. Now if $x \in A \cap (\sum_{I_{\beta}} X_{\lambda})$ then $x \in A \cap (\sum_{I_{n}} X_{\lambda})$ for some n. Therefore, $\theta(x) \in \sum_{L_n} \theta(X_\lambda)$ which implies that $x \in B_{n+1} \subseteq A_\beta$. Since $A_\beta \subseteq A \cap$ $(\sum_{I_{\beta}} X_{\lambda})$, we have that $A_{\beta} = A \cap (\sum_{I_{\beta}} X_{\lambda})$. We also have that $A_{\beta} = A \cap (\sum_{I_{\beta}} X_{\lambda})$ $\subseteq \{a \in A \mid \theta(a) \in \sum_{I_B} \theta(X_\lambda)\}.$ If $\theta(a) \in \sum_{I_B} \theta(X_\lambda)$ where $a \in A$, then $\theta(a) \in \sum_{I_n} \theta(X_\lambda)$ for some n. By definition, $a \in B_{n+1} \subseteq A_{\beta}$. Hence,

$$A_{\beta} = A \cap \left(\sum_{I_{\beta}} X_{\lambda}\right) = \left\{a \in A \mid \theta(a) \in \sum_{I_{\beta}} \theta(X_{\lambda})\right\}.$$

Thus $[A_{\alpha}]_{\alpha \leq \beta}$ and $[I_{\alpha}]_{\alpha \leq \beta}$ satisfy (i)–(iv).

We now establish

(v) A_{α} is a direct summand of $A_{\alpha+1}$ and $A_{\alpha+1} = A_{\alpha} + F_{\alpha}$ where F_{α} is free.

Let π_{α} be the natural projection of K_{μ} onto $\sum_{I_{\alpha+1}-I_{\alpha}} X_{\lambda}$ (we may assume that $I_{\alpha+1} \neq I_{\alpha}$). Suppose that $x \in A_{\alpha+1}$ such that $\pi(x) \in t(\sum_{I_{\alpha+1}-I_{\alpha}} X_{\lambda})$. Then x = y + w where $y \in \sum_{I_{\alpha}} X_{\lambda}$ and where $w \in t(\sum_{I_{\alpha+1}-I_{\alpha}} X_{\lambda})$. This implies that $\theta(x) = \theta(y)$ $\in \sum_{I_{\alpha}} \theta(X_{\lambda})$ which implies by (iv) that $x \in A_{\alpha}$. Hence, $A_{\alpha+1} \cap \text{Ker } \pi_{\alpha} = A_{\alpha+1} \cap (\sum_{I_{\alpha}} X_{\lambda}) = A \cap (\sum_{I_{\alpha}} X_{\lambda}) = A_{\alpha}$ and $\pi_{\alpha}(A_{\alpha+1})$ is torsion free. Therefore, $A_{\alpha+1}/A_{\alpha}$ is isomorphic to a torsion free subgroup of $\sum_{I_{\alpha+1}-I_{\alpha}} X_{\lambda}$. Since by (i) $|I_{\alpha+1}-I_{\alpha}| \leq \aleph_0$ and since $|K_{\aleph_0}/tK_{\aleph_0}| \leq \aleph_0$, it follows that $|A_{\alpha+1}/A_{\alpha}| \leq \aleph_0$. By Lemma 2, $A_{\alpha+1}/A_{\alpha}$ is free. Thus (v) is established. Since A_0 is free, then (ii) and (v) imply that A is free.

3. The structure of B^N -groups. Let G be a torsion free group and let T be a torsion group. Then an extension $T \rightarrow H \rightarrow G$ is called a quasi-splitting extension of T by G if H is quasi-isomorphic to T+G. By a Theorem of C. Walker [14], the extension above is quasi-splitting if and only if it represents an element of finite order in Ext (G, T). The following theorem characterizes those torsion free groups G for which every extension $T \rightarrow H \rightarrow G$ is quasi-splitting for all torsion groups T.

THEOREM 3.1. Let G be a torsion free group. Then Ext(G, T) is torsion for all torsion groups T if and only if G is free.

Proof. The sufficiency is clear. Therefore, suppose that G is a torsion free group such that Ext (G, T) is torsion for all torsion groups T. Let μ =rank (G) and let M

be a group satisfying Theorem 2.3 such that rank $(M/tM) = \mu$. Since M/tM is torsion free and divisible there is a monomorphism $f: G \rightarrow M/tM$. Let θ be the natural map of M onto M/tM. The exactness of the sequence

$$\operatorname{Hom}(G, M) \xrightarrow{\theta_*} \operatorname{Hom}(G, M/tM) \xrightarrow{\delta_G} \operatorname{Ext}(G, tM)$$

implies that there is a nonzero integer n such that $nf \in \text{Im } \theta_*$, that is, there is a homomorphism $\phi \in \text{Hom } (G, M)$ such that $nf = \theta \phi$. Since nf is also a monomorphism, ϕ must be a monomorphism and $\phi(G) \cap \text{Ker } \theta = \phi(G) \cap tM = 0$. Thus G is isomorphic to a torsion free subgroup of M which implies by Theorem 2.3 that G is free.

The following corollary settles the question of Baer that was mentioned in the introduction.

COROLLARY 3.2. A group G is a Baer group if and only if it is free.

Proof. Again the sufficiency is clear. Since Baer groups are necessarily torsion free (see [1]) we may apply Theorem 3.1 to prove the necessity.

Before continuing, one should observe that our results are valid for modules over a principal ideal domain(2). Let N be a nonempty subset of the primes and let I_N be the subring of the rationals Q defined by the rule: $m/n \in Q$, where $m, n \in Z$ and $n \neq 0$, is an element of I_N if and only if n and p are relatively prime for each prime $p \in N$. We also use the symbol I_N to denote the additive group of I_N . However, no confusion should arise. Observe that a torsion group T, where $T_p = 0$ for $p \notin N$, can be considered a module in a natural fashion over the ring I_N . For a group G, one should also observe that $Hom(I_N \otimes G, T) = Hom_{I_N}(I_N \otimes G, T)(^3)$. We now establish the following lemma.

LEMMA 3.3. Let N be a nonempty subset of the primes and let T be a torsion group such that $T_p = 0$ for $p \notin N$. If G is a group such that $Tor(G, I_N/Z) = 0$, then Ext(G, T), $Ext(I_N \otimes G, T)$ and $Ext_{I_N}(I_N \otimes G, T)$ are isomorphic as abelian groups.

Proof. We may assume that N is a proper subset of the primes since otherwise $I_N = Z$. Let \tilde{N} be the set of primes not in N. From the definition of I_N we obtain the exact sequence $Z \hookrightarrow I_N \longrightarrow \sum_{p \in \tilde{N}} C(p^{\infty})$ which yields the exact sequence $Z \otimes G \rightarrowtail I_N \otimes G \longrightarrow \sum_{p \in \tilde{N}} C(p^{\infty}) \otimes G$. Hence, we obtain the exact cohomology sequence $\operatorname{Ext} \left(\sum_{p \in \tilde{N}} C(p^{\infty}) \otimes G, T \right) \rightarrowtail \operatorname{Ext} \left(I_N \otimes G, T \right) \longrightarrow \operatorname{Ext} \left(Z \otimes G, T \right)$. Since $\sum_{p \in \tilde{N}} C(p^{\infty}) \otimes G$ and T are torsion groups with no nonzero primary components in common, we have that $\operatorname{Ext} \left(\sum_{p \in \tilde{N}} C(p^{\infty}) \otimes G, T \right) = 0$ and thus

$$\operatorname{Ext}\left(I_{N}\otimes G,T\right)\cong\operatorname{Ext}\left(Z\otimes G,T\right)\cong\operatorname{Ext}\left(G,T\right).$$

⁽²⁾ All rings considered in this paper are assumed to be commutative with identity and all modules are assumed to be unital.

⁽³⁾ We drop the subscript "R" on the functors $\operatorname{Hom}_R(A, B)$ and $\operatorname{Ext}_R(A, B)$ only when R = Z.

Let E be the I_N -injective envelope of T. Clearly E is both injective as an I_N -module and as an abelian group. Therefore, the exactness of $T \rightarrowtail E \longrightarrow E/T$ induces exactness of the rows of the commutative diagram:

$$\operatorname{Hom} (I_{N} \otimes G, T) \to \operatorname{Hom} (I_{N} \otimes G, E) \to \operatorname{Hom} (I_{N} \otimes G, E/T) \longrightarrow \operatorname{Ext} (I_{N} \otimes G, T)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\operatorname{Hom}_{I_{N}}(I_{N} \otimes G, T) \to \operatorname{Hom}_{I_{N}}(I_{N} \otimes G, E) \to \operatorname{Hom}_{I_{N}}(I_{N} \otimes G, E/T) \longrightarrow \operatorname{Ext}_{I_{N}}(I_{N} \otimes G, T)$$

Thus the cokernels are isomorphic.

THEOREM 3.4. A group G is a B^N -group if and only if $I_N \otimes G$ is free as an I_N -module.

Proof. Suppose that G is a B^N -group. Then clearly $(tG)_p = 0$ for each $p \in N$. Therefore, $I_N \otimes (tG) = 0$ and hence $I_N \otimes G \cong I_N \otimes (G/tG)$. The exactness of $0 = \operatorname{Hom}(tG, T) \to \operatorname{Ext}(G/tG, T) \to \operatorname{Ext}(G, T) = 0$, when T is a torsion group such that $T_p = 0$ for $p \notin N$, implies that G/tG is a B^N -group. By Lemma 3.3, $I_N \otimes (G/tG)$ is a Baer module for the ring I_N . Hence, $I_N \otimes (G/tG)$ is free as an I_N -module and thus $I_N \otimes G$ is also free as an I_N -module. With the aid of Lemma 3.3 the sufficiency is easily obtained.

A corollary to Theorem 3.4 is the following:

COROLLARY 3.5. G is a B^N -group if and only if $(tG)_p = 0$ for each $p \in N$ and G/tG is isomorphic to a subgroup of $\sum_{\mu} I_N$ where $\mu = rank$ (G/tG).

Proof. By Theorem 3.4, G is a B^N -group if and only if $I_N \otimes G \cong \sum_{\mu} I_N$ for some cardinal number μ . Therefore, $I_N \otimes (tG) = 0$, which holds if and only if $(tG)_p = 0$ for $p \in N$. Hence $I_N \otimes G \cong I_N \otimes (G/tG)$. From the exactness of $Z \longrightarrow I_N \longrightarrow I_N/Z$, we obtain $G/tG \cong Z \otimes (G/tG) \longrightarrow I_N \otimes (G/tG) \longrightarrow (I_N/Z) \otimes (G/tG)$. Since $(I_N/Z) \otimes (G/tG)$ is torsion, we have that $\mu = \text{rank } (I_N \otimes (G/tG)) = \text{rank } (G/tG)$.

Our next corollary is an immediate consequence of Corollary 3.5 and a Theorem of Nunke [11] on slender groups.

COROLLARY 3.6. A torsion free B^N -group is slender.

4. On locally free B^N -groups. Let N be a nonempty proper subset of the primes. Although Theorem 3.4 implies there are nonfree B^N -groups (for example the group I_N), one might suspect that locally free B^N -groups are free. However, we shall presently show, for each nonempty proper subset N of the primes, that there is a pure subgroup of P and hence a locally free group which is a nonfree B^N -group. We begin by first generalizing a method of Chase [5] for constructing pure subgroups of P with certain prescribed properties. Let S denote the group of finite sequences in P and, for the purposes of our next lemma and theorem, let E denote the cotorsion completion of S. (For information concerning cotorsion groups, see [9].)

LEMMA 4.1. Let C be a countable pure subgroup of P that contains S and let U be a pure subgroup of E. Then there is a pure subgroup A of P such that A contains C and $A/C \cong U$.

Proof. Specker [13] has shown that P contains a pure free subgroup of rank \aleph_1 . It follows by a Theorem of Chase [6] on pure independence, that any maximal pure independent subset of P has cardinality at least \aleph_1 . Hence, there must be a subgroup F of P such that $C \subseteq F$ and such that F/C is a pure free subgroup of P/C of rank \aleph_0 . Since P/S is cotorsion (see [11]) and since C is a pure subgroup of P containing S, then P/C is also a torsion free cotorsion group. Therefore, $P/C = K/C + \overline{C}/C$ where K/C is Hausdorff, $F \subseteq K$ and \overline{C}/C is divisible. Let H be the subgroup of P such that H/C is the n-adic closure of the pure free subgroup F/C in K/C. Since (K/C)/(H/C) must be reduced and torsion free, it follows that H/C is cotorsion and that H/C is a direct summand of K/C. Since F/C is pure and dense in H/C, we have that $H/C \cong E$. Therefore, the group U may be identified with a pure subgroup of P/C. Thus, there is a pure subgroup A of P such that A contains C and $A/C \cong U$.

THEOREM 4.2. Let $[U_{\alpha}]_{\alpha<\Omega}$ be a family of countable pure subgroups of E. Then there is a pure subgroup A of P such that $A = \bigcup_{\alpha<\Omega} A_{\alpha}$ where the subgroups A_{α} satisfy:

- (i) If $\alpha < \beta$, $A_{\alpha} \subseteq A_{\beta}$.
- (ii) A_{α} is free of rank \aleph_0 .
- (iii) $A_{\alpha+1}/A_{\alpha} \cong U_{\alpha}$.
- (iv) If α is a limit ordinal, $A_{\alpha} = \bigcup_{\beta < \alpha} A_{\beta}$.

Furthermore, if there is a countable ordinal λ such that $U_{\alpha} \neq 0$ and $Hom(U_{\alpha}, Z) = 0$ for all $\alpha > \lambda$, then A is not free.

Proof. The construction of a pure subgroup A of P satisfying (i)–(iv) is an immediate consequence of Lemma 4.1. Hence, suppose that there is a countable ordinal λ such that $U_{\alpha} \neq 0$ and Hom $(U_{\alpha}, Z) = 0$ for all $\alpha > \lambda$. Suppose that $f \neq 0 \in \text{Hom }(A, Z)$ such that $f(A_{\lambda+1}) = 0$. Let α be the smallest ordinal such that $f(A_{\alpha}) \neq 0$. Clearly, α cannot be a limit ordinal. Hence, $\alpha = \beta + 1$ and $\beta \geq \lambda + 1$ since $f(A_{\lambda+1}) = 0$. Let h be the restriction of f to $A_{\beta+1}$. Since $h \neq 0$ and since $h(A_{\beta}) = 0$, it follows that there is a nonzero homomorphism in $\text{Hom }(A_{\beta+1}/A_{\beta}, Z) \cong \text{Hom }(U_{\beta}, Z)$. But this is a contradiction since $\beta \geq \lambda + 1 > \lambda$. Thus, if $f \in \text{Hom }(A, Z)$ and $f(A_{\lambda+1}) = 0$ then f = 0, that is, $\text{Hom }(A/A_{\lambda+1}, Z) = 0$. Since $U_{\alpha} \neq 0$ for all $\alpha > \lambda$, we have that $|A| = \aleph_1$. Clearly, no free group F of cardinality \aleph_1 has the property that $\text{Hom }(F/F_0, Z) = 0$ where F_0 is a countable subgroup of F. Thus A is not free.

THEOREM 4.3. Let N be a nonempty proper subset of the primes. Then there is a locally free B^N -group that is not free.

Proof. Observe that the cotorsion completion of the group I_N is a direct summand of E. Let A be the group constructed in Theorem 4.2 with $U_{\alpha} = I_N$ for each $\alpha < \Omega$. Since Hom $(I_N, Z) = 0$, we have that A is a nonfree, locally free group. Note

that $I_N \otimes A = \bigcup_{\alpha < \Omega} (I_N \otimes A_\alpha)$. The exact sequence $A_\alpha \rightarrowtail A_{\alpha+1} \longrightarrow I_N$ yields the exact sequence $I_N \otimes A_\alpha \rightarrowtail I_N \otimes A_{\alpha+1} \longrightarrow I_N \otimes I_N$. By a Theorem of Baer [2], it is easily seen that $I_N \otimes I_N \cong I_N$. Since, for each α , $I_N \otimes A_\alpha$ is free as an I_N -module and since $(I_N \otimes A_{\alpha+1})/(I_N \otimes A_\alpha) \cong I_N$, it follows that $I_N \otimes A$ is free as an I_N -module. By Theorem 3.4, A is a B^N -group.

COROLLARY 4.4. If μ is an uncountable cardinal and if N is a nonempty proper subset of the primes, then the completely decomposable group $\sum_{\mu} I_N$ contains a locally free group that is not completely decomposable.

Proof. We may assume that $\mu = \aleph_1$. Let A be a B^N -group satisfying Theorem 4.3. Then the exact sequence $Z \rightarrowtail I_N \longrightarrow I_N/Z$ yields that $A \cong Z \otimes A \rightarrowtail I_N \otimes A \cong \sum_{\aleph_1} I_N$. If the set N consists of a single prime p, let $B^{(p)}$ denote B^N . Note that the statement that G is a $B^{(p)}$ -group for each prime p does not imply the statement that G is a Baer group. Indeed, in view of Corollary 3.2, Chase [5] constructed a group that is a $B^{(p)}$ -group for each p but that is not a Baer group. We also remark that if G is a $B^{(p)}$ -group for each p, then Corollary 3.5 implies that G is torsion free. Our concluding theorem shows that if a group G is a $B^{(p)}$ -group for each prime p then, for any torsion group T, a quasi-splitting extension of T by G is necessarily a splitting extension.

THEOREM 4.5. If G is a $B^{(p)}$ -group for each prime p, then Ext (G, T) is torsion free for any torsion group T.

Proof. Let p be a prime. Then $T = H + T_p$ where $H_p = 0$. Therefore, Ext $(G, T) \cong \text{Ext } (G, H) + \text{Ext } (G, T_p) = \text{Ext } (G, H)$ since Ext $(G, T_p) = 0$. By a theorem in [4], we have the isomorphism

Hom
$$(C(p), \operatorname{Ext}(G, H)) + \operatorname{Ext}(C(p), \operatorname{Hom}(G, H))$$

 $\cong \operatorname{Ext}(C(p) \otimes G, H) + \operatorname{Hom}(\operatorname{Tor}(C(p), G), H)$

where C(p) is the cyclic group of order p. Since $C(p) \otimes G$ is p-primary and since $H_p=0$, then $\operatorname{Ext}(C(p) \otimes G, H)=0$. Also $\operatorname{Hom}(\operatorname{Tor}(C(p), G), H)=0$ since G is torsion free. Thus $\operatorname{Hom}(C(p), \operatorname{Ext}(G, T)) \cong \operatorname{Hom}(C(p), \operatorname{Ext}(G, H))=0$. Since p was an arbitrary prime, it follows that $\operatorname{Ext}(G, T)$ is torsion free.

REFERENCES

- 1. R. Baer, The subgroup of the elements of finite order of an Abelian group, Ann. of Math. 37 (1936), 766-781.
 - 2. —, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), 68-112.
 - 3. ——, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219-234.
- 4. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
 - 5. S. Chase, Function topologies on Abelian groups, Illinois J. Math. 7 (1963), 593-608.
- 6. ——, "On group extensions and a problem of J. H. C. Whitehead," in *Topics in Abelian groups*, Scott, Foresman and Co., Chicago, Ill., 1963, pp. 173–193.

- 7. J. Erdös, On the splitting problem of mixed Abelian groups, Publ. Math. Debrecen 5 (1958), 364-367.
 - 8. L. Fuchs, Abelian groups, Hungarian Academy of Sciences, Budapest, 1958.
- 9. D. K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. 69 (1959), 366-391.
- 10. P. Hill and C. Megibben, Extending automorphisms and lifting decompositions in Abelian groups, Math. Ann. 175 (1968), 159-168.
 - 11. R. J. Nunke, Slender groups, Acta. Sci. Math. Szeged 23 (1962), 67-73.
- 12. J. Rotman, On a problem of Baer and a problem of Whitehead in Abelian groups, Acta. Math. Acad. Sci. Hungar. 12 (1961), 245-254.
- 13. E. Specker, Additive gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950), 131-140.
- 14. C. Walker, Properties of Ext and quasi-splitting of Abelian groups, Acta. Math. Acad. Sci. Hungar. 15 (1964), 157-160.

University of Houston, Houston, Texas